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ABSTRACT 

A servo system for phase-locking two HF chemical lasers,  operated 

on selected lines,  has been designed and simulated.    A steady-state phase 

error is achieved that is adequate for coherent optical recombination.    The 

results are based on the measured frequency drift of a small HF chemical 

laser and the measured frequency response of a piezoelectric transducer 

(PZT) mirror driver.    A major innovation is the use of rate feedback with a 

laser Doppler sensor to extend the useful frequency response of the PZT 

driver.    Closed-form expressions for the regulator gains derived by quadra- 

tic synthesis and state vector covariance are provided. 
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I.    INTRODUCTION 

The major optical problems for high-power lasers are efficient 

power extraction and handling and control of such laser beams with adequate 

beam quality and stability.    A technique for coherent optical recombination 

of several laser beams may have to be developed to solve these problems. 

For the coherent optical recombination of such laser beams as the master 

1   2 and slave oscillator array (MASOA) system  '     and for such laser-frequency 

phase-control systems as the coherent optical adaptive technique (COAT)^ 

and laser frequency stabilization schemes,    "    a wide bandwidth phase- 

control system is required. 

The following critical issues for the phase-control of HF chemical 

lasers operating on selected lines were examined:    (1) What is the frequency 

drift of HF chemical lasers?    (2) What is the response of available piezo- 

electric transducer  (PZT) mirror drivers?    (3) Can a servo be designed to 

phase-lock HF chemical lasers ? 

The frequency drift of a small HF chemical laser   '     and the frequency 

response of a PZT mirror driver were measured,   and models were fitted 

to the experimental data. 

A phase-control servo was designed by means of the quadratic 

8  9 synthesis technique.   ' Figure  1 is a simplified block diagram of the 

servo.    A major innovation is the use of rate feedback with a laser Doppler 

sensor      used on the mirror face to increase the useful PZT frequency 
11   12 

response     '        and reduce the effects of nonlinearities. 

1- 



PZT SLAVE 
OSCILLATOR 

\ T-J^ 
DRIVER 'ins 

i k 

MASTER 
OSCILLATOR =£> 

AO 
MODULATOR ^ 

V 
SERVO HETERODYNE 

■* 
DETECTOR 
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II.    HF CHEMICAL LASERS 

7   13 The cw HF(DF) chemical laser   '       is a potential high-efficiency, 

high-power gas laser,   but its gain medium is complicated by the nature of 

the chemical reaction and the rotation-vibration transitions,  medium nonuni- 

14, 15 formity,   and mixed inhomogeneous and homogeneous behavior.      ' The 

frequency stability of a free-running cw HF chemical laser is rather poor, 
c 

on the order of 30 MHz.      It is necessary to determine the frequency drift 

of the laser to estimate the performance of the servo loop. 

Experiments were carried out with a cw HF chemical laser operating 

5  7 on a single line.    The laser used is described in an earlier paper.    '    Briefly, 

F atoms are generated by a discharge in a gas mixture of He,   O-,   and SF, . 

The latter is mixed with H?,   which is injected just upstream of a transverse 

optical cavity.    The cavity pressure could vary from 5 to 15 Torr.    Typical 

single-line output at 2. 87 fxm is  0. 5 W.    The gain medium is   10 cm long, 

and there is a small   signal gain of about 0. 05 cm 

A stable resonator was used that had a 2-m radius-of-curvature total 

reflector (reflectivity > 95%) and a flat grating (reflectivity 80%) as the 

1 output coupling.    The resonator and coupling were separated by a distance 

) of 150 cm; hence,   the empty cavity mode spacing was  100 MHz.    A TEM     - 

mode output beam was obtained by means of a variable aperture inside the 

resonator.    The totally reflecting mirror was mounted on a PZT driver, 

which could move the mirror and scan the laser frequency across the gain 
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linewidth.    An InAs fast detector and a Hewlett-Packard spectrum analyzer 

with a plug-in 8553B unit were used to analyze the beat-frequency spectrum. 

A 25-cm Fabry-Perot confocal interferometer also was used to measure 

the frequency drift spectrum of the laser (Fig.   2).    Frequency drift above 

1000 Hz is obtained by extrapolating the measured data.    The measured 

frequency drift was close to but somewhat lower than that measured in Ref.  4. 

The difference may be the result of our optics being mounted on a vibration- 

isolated optical table (Newport Research Corporation). 

The frequency drift is modeled by a second-order Gaussian Markov 

random process with cascaded lag filter time constants T and steady-state 
5 

fluctuation root-mean-square (RMS) CJ.    Values of T = 4. 5 x 10    p.sec and 

cr = 200 rad/fJLsec fit the measured and extrapolated frequency drift shown in 

Fig.   2 very well. 



III.    PZT DRIVER 

The frequency of the lowest order resonance mode for a thin disk- 

shaped piezoelectric transducer (PZT) driving a mirror of mass mr   which 

is much larger than the mass of the PZT driver,   is approximately 

* = [E=  igbt (i) 
n      N m      \l   4hm 

where k,   D,  h,   and Y are the equivalent spring constant,  diameter,  thickness, 

and Young's modulus of the PZT driver,   respectively.    Higher  order modes 

may involve the moment of inertia of the PZT driver.    The displacement 

Ah of the PZT driver is 

Ah = d33Eh (2) 

where d_- is the piezoelectric constant,   and E is the applied electric field 

strength.    For high-frequency response,  h and m should be as small as 

possible.    The thickness is limited by the required maximum displacement 

and the maximum electric breakdown voltage or maximum electric-field 

strength. 

The mechanical response of the PZT and mirror is modeled by a 

second-order transfer function 

2 
(JU 

H(s)=-5 5- <3> 
s     + 2£u>   s + CJU 

'  n n 

where uu    is the resonance frequency, and t, is the damping coefficient.  For a 

typical PZT mirror driver,  well within the state of the art, 
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CO = 0. 03 rad/fisec (5 kHz) and £,   =0.6.    Because of excessive PZT phase 

lag,   the frequency response of a simple single-loop positioning servo is 

limited to about 3 kHz — not high enough to follow the laser frequency vari- 

ations and maintain phase lock.    A more sophisticated servo design is 

required. 

• 
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IV.    SERVO DESIGN BY QUADRATIC SYNTHESIS 

Servo design for linear,   multivariable systems is well developed. 

Linearization of nonlinear systems makes linear design methods widely appli- 

cable,   particularly to laser phase control. 

In the results reported here the uncertainty in models and signals is 

ignored,   and a range of gains is investigated to determine the relationships 

of the PZT bandwidth,   laser drift,   and the phase error.     Additional analysis 

is required to specify the necessary signal-to-noise ratios of the loop ele- 

ments to ensure that the performance of the idealized,  deterministic design 

can be achieved. 

The quadratic synthesis method was used to design the phase-control 

system.    The quadratic synthesis approach is preferred to other linear 

synthesis techniques such as the frequency-domain and root-locus methods, 

8.9 pole-placement,   and compensator parameter optimization  '    because the com- 

plexities of more detailed models and multiple PZT drivers can be analyzed 

in a progressive manner by means of the same basic approach. 
12 

Quadratic-control-system synthesis always results in a stable system, 

although some designs may require unrealistically high gains or result in 

actuator excursions outside the allowable dynamic range or valid model 

linearization region.     Hence   experience and caution are required in interpret- 

ing the results,   and a simulation is used to verify the design. 

-9- 



Models of the PZT,   laser frequency drift,  phase detector,   and state 

feedback loop are shown in Fig.   3.    It is assumed that the lasers are locked 

and that the approximation sin 0 «*  0 is valid in order to compute the regu- 

lator gains.    The electrical response of the PZT is not explicitly modeled;12 

it is assumed that the amplifier can supply the necessary driving voltage and 

current without saturating and that the amplifier transient response is not a 

limiting factor.    There are five state variables:   6 is the linearized phase 

error (radians),  y is frequency shift in the slave laser caused by PZT dis- 

placement (rad/^sec),   v is the time derivative of y,   and d and e are the state 

variables used to model the relative frequency shift between the two lasers 

that results from drift (rad/jisec). 

In quadratic synthesis all the state variables are multiplied by gains 

and summed to form the error signal (Fig.   3).    Not all state variables are 

directly measured in the actual system,   and in general an "observer system" 

is necessary to reconstruct the unmeasured state variables.8   Since noise 

is always present,  filtering is necessary to reconstruct smooth estimates of 

the unmeasured state variables.    Filtering will add some phase lag to the 

loop; hence,   it is desirable to provide the highest quality observed signals 

in order to reduce the filtering lag to a minimum.    The state feedback gains 

Cl  ~ C5 minimize the average value of the cost functional J, 

J = /[(W0)2 + u2]dt (4) 

10- 



LASERS/PZT/PHASE DETECTOR 

l-O .PHASE 
ERROR 

Fig.   3.    State Feedback Regulator 

•11- 
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where u is the PZT commanded frequency shift,   and W is the phase error 

weighting coefficient.   In the quadratic synthesis method W is the parameter 

that the designer adjusts to achieve the desired response.    Increasing W 

increases the gains and decreases the phase error.    There are practical 

limits on the size of W (and the resultant feedback gains) because of noise, 

unmodeled nonlinearities and resonance modes,   and power limits.    The 

major advantage of the quadratic synthesis method,  particularly in a pre- 

liminary design study such as this,   is that the controller design is a function 

of only one independent parameter (W). 

Preliminary results indicated that the control system could be simplified 

without an appreciable loss in performance if it is assumed that C. = C? and 

C5 = 0 (Appendix A).    With this approximation the state feedback regulator 

reduces to the conventional servo-loop architecture for an actuator position- 

ing control system (Fig. 4),   i.e.,   an inner rate stabilized loop and an outer 

position loop with high-frequency boost compensation.  If 6, 6, and v are mea- 

sured directly, no observer system is necessary.  Rate feedback is mandatory 

in conventional precision tracking loops to reduce the phase lag of lightly 
Q      it 

damped gimballed masses.    ' In this application rate feedback reduces the 

PZT phase lag by increasing the damping,   which in turn permits a greater 

degree of high-frequency boost in the outer position loop.    Rate feedback also 

reduces the effect of nonlinearities in the PZT response,   a result that cannot 

be achieved with outer loop phase lead compensation alone.    Figure 5 is a 

•12- 
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plot of the loop gains as a function of W.     The gains are computed by the 

routine procedure of solving the steady-state Ricatti equation associated 

8  9 with the state equations and the cost functional J.   ' 

Figure 6 is a block diagram of the physical elements of the phase 

control servo. 

-15- 
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V.    IMPLEMENTATION OF RATE FEEDBACK 

A major design problem is to derive the PZT displacement rate signal. 

Figure 7 is a schematic diagram of the PZT driver with a laser Doppler 

sensor for measuring the displacement rate. 

Laser Doppler velocimeters       have been extensively used for velocity 

measurement.    Basically,  when light is scattered or reflected from a 

moving object,   its frequency is shifted as a result of the Doppler effect. 

The frequency shift Au>     is related to the velocity V by the relation 

AUD     = V  •  (k.   - k0) = 2 — uu    cos 0 cos %■ (5) 
L) 1 U C        -Li Lt 

where k*. and k are the wave vectors of the incident light and scattered 

light, respectively; c is the speed of light; <p is the angle between V and 

(k.   - k_);  \b is the angle between k. and -k0;   and cu     is the frequency of the 
1 Z 1 Z -Li 

light source. 

For the configuration shown in Fig.  7,   both cos 0 and cos 0/2 are 

near  1.    For the application here,   the mirror velocity is of the order of 
_5 

10      m/sec,  which corresponds to a frequency shift   Acu     of 20 Hz.    An 

optical heterodyne and acousto-optical modulation technique is proposed to 

detect such low frequencies with sufficient bandwidth.   As shown in Fig.   7, 

the laser beam is split by the first beam splitter.    The reflected beam is 

reflected again by the mirror and reaches a second beam splitter.    The 

transmitted beam goes through an acousto-optical modulator,  which shifts 

17- 
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the laser frequency by a frequency u)     .    Then both beams are combined by 

the second beam splitter and fall on the photodetector.    The detector output 

is the beat signal u)      ± a^. 

An fm demodulator with center frequency com is used to detect a>j). 

The fm-demodulator output v     is then proportional to u^.    This signal is 

then passed through a low-pass filter,   an amplifier,   a high-voltage amplifier, 

and finally fed back to the PZT driver. 

For a  typical  case  the center frequency u>      is  100 kHz with a signal 

bandwidth of 20 kHz.    An fm  demodulator with an accuracy of -80 dB is 

required to detect the 20-Hz modulation.    This performance is within reach 

of present technology. 

The inner rate feedback loop transfer function is 

„     2 
C,CD 

Hc(s)=:-1E— 5_n          (6) 

\       n 3  n/ n 

A comparison of Eqs.   (3) and (6) reveals that the rate feedback introduces 

an active damping force,   which reduces the phase lag,  which in turn permits a 

greater degree of high-frequency boost in the outer positioning loop,   without 

causing instability.    Furthermore,   because of the large rate feedback gain, 

J   8 

the effect of nonlinearities in the PZT response is reduced. 

The step response of the PZT with and without rate feedback is shown 

in Fig.   8 for u)    = 0. 03 rad/usec and C = 0.6.    Note that the PZT response 

with a rate feedback gain of C„ = 421 (isec is much faster than the PZT 

without rate feedback.    The response of the inner loop is ultimately limited 

-19- 
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by the rate sensing noise and higher order structural resonances.    How far 

the PZT response can be extended by the use of rate feedback must be 

determined experimentally. 
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VI.    SERVO-TRACKING-ERROR COVARIANCE ANALYSIS 

The RMS steady-state phase error can be computed as a closed-form 

function  of  W  and the  RMS  random frequency  drift a   if the  approxima- 

tion sin 6 «*  6 is valid.   The procedure is described in Ref. 8 and the results 

are given in Appendix B.  Figure 9 is a plot of the RMS phase error versus 

W for UJ    = 0. 03 rad/fxsec (5 kHz), a = 4l X  200 |j.sec = 282 |j.secfor two lasers), 

T = 4. 5 x 105 |jLsec,   and £ =0.6.     The lower region of the plot (below the 

dashed line) is valid for the linearized models;   above about 0. 1 rad the linear- 

izing assumption of sin 9^0 may introduce larger error. 

For the frequency-drift and PZT parameters considered, i.e.,   a noise-free 

3 -1 control system with feedback gains corresponding to W = 10    [xsec    ,   the plot 

(Fig.   9) indicates that the RMS phase error is about 12 deg. 

A single PZT servo may require excessively large excursions.    The 

typical approach is to use a high-gain,   low-frequency servo to reduce the 

large-excursion frequency drift in conjunction with a low-gain,   high-frequency 

servo to remove the residual high-frequency,  small-excursion drift.    The 

low-frequency servo presents no design problems; the concern here is with 

canceling the high-frequency (above 1000 Hz) drift.    If it is assumed,  for 

example,  that the low-frequency servo reduces the frequency variations below 

100 Hz and the residual high-frequency drift is specified by a = 0.45 rad/jasec 
_ i 

and T  = 717 fisec,  the servo gains corresponding to W = 10 usec       are then 

adequate to drive the residual phase error to an RMS value of less than 

3 deg (Fig.   9). 
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VII.    SIMULATION RESULTS 

The phase-control system in Fig.  4 was simulated on a CDC 7600 

computer.    Gaussian distributed random numbers were used to simulate 

the white noise input to the frequency-drift shaping filters.    A total of 20 

differential equations (5 for the servo and 15 for the linearized covariance 

analysis) were numerically integrated by means of a fixed-step Runge Kutta 

algorithm with a step size of 0. 5 |isec for a period of 2000 |j.sec. 

Figures  10 to  14 are time-history plots of the state variables with 

the lasers locked initially (9 = 0) for co    = 0. 03,   £ = 0. 6,   a = 0.45 rad/fxsec, 

T = 7.2 X 10   |jLsec, and the gains corresponding to W =  10 p.sec_1. 

The corresponding i-c bounds from the state covariance equations 

are overlayed on the state variables.    Although the covariance analysis is 

based on the linearized model,   the results are valid (signal lies inside 

bound 67% of the time) when sin 8^9,  which is true for this case after 

lock-up has been achieved. 
1 6 

The transient response is highly'nonlinear.        A typical case with an 

initial frequency difference of 10.0 MHz locks in 60 fisec.    Cycle slipping 

occurs,  but phase lock-up is rapidly achieved because of the frequency feed- 

back term in the regulator error signal.    The actual lock-up time may be 

limited by the saturation of the PZT driver amplifier,   which was not modeled. 

The excellent agreement between the simulation and the linearized 

covariance analysis simplifies the performance analysis considerably. 

-25- 
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If more refined laser drift measurements require different values of cr or T 

or if a different PZT driver requires changes in £, or GO , new control gains 

and the steady-state RMS phase error can be rapidly determined. Control- 

system parameter optimization is also possible. 
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VIII.    CONCLUSION 

On the bases of the PZT characteristics and the laser frequency drift 

model derived from experimental data,  adequate phase-control of HF chemi- 

cal lasers appears to be feasible if sensor noise and PZT nonlinearities do 

not seriously degrade the servo performance.    A major improvement over 

previous laser phase control designs is the use of PZT displacement rate 

feedback to stabilize and extend the frequency response of the servo. 
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APPENDIX A 

QUADRATIC SYNTHESIS OF FEEDBACK REGULATOR 

A.        OPTIMAL CONTROL EQUATIONS 

1. PHYSICAL SYSTEM MODEL 

x  = Fx + Gu 

2. CONTROLLER 

u = -Cx 

3. PERFORMANCE INDEX 

.t£ 

J = 4   /      (xTAx + uTBu)dt 

"'to 

4. RICCATI EQUATION 

S = -SF - FTS - A + SGB-iGTs 

5. OPTIMAL CONTROL GAINS 

C = B_1GTS 
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6. MATRIX DEFINITIONS 

d = s = 0 by assumption. 

F = 

0 1 0 

0 0 1 

0 -Pl -p2 

w2 0 0 

0 0 0 

0 0 0 

B = 1 

Sll S12 S13 

Si2 S22 S23 

S13 S23 

2C^n 

'33J 

B.        STEADY-STATE RICCATI EQUATION COMPONENTS 

AND OPTIMAL REGULATOR GAINS 

2 2   w2  n 
Pis13 " W =0 

2 2 
2(S12 -PlS23) + PlS23 = ° 

-2(S23-P2
S33) + P?S33 = ° 

"(S12 -P2S13)+Pls13S33 = ° 

-(S11 -PlS13)+Pls13S23 = 0 

(s22 " P2S23) " (s13 " Pls33) + P1S23S33 = ° 
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C.        SOLUTION TO STEADY-STATE RICCATI EQUATION 

W 
13      p 1 

6 
T- 4s + 4>2S33 + <P?P2 + Pl^S33 + ^1*2 " PlW)S33 " 2 pf W = ° 

solved numerically for positive real root and plotted in Fig. A-l. 

2    2       .i.   9 
Pls33 + 2p2s33 

S23 2 

P2 s,,= — W + p, Ws _ ., 12     p. rl       33 

sn =W + PlWs23 

W 2 
522 =P2S23 "P7 

+PlS33 + PlS22S33 

D.        REGULATOR GAINS 

The rate loop gain C3 is only a function of £,   oon>   and W and is given in 

normalized form in Fig.  A-l.     The gains for any W,   wn,   and § can be deter- 

mined with the use of C3 in Fig.  A-l and by solving for C^ and C2 by means 

of the control-gain expressions. 
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Fig.  A-l.    Rate Feedback Gain 
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Cl=PlS13 = W 

C2=PlS23 

C3 " P1S33 

PlC3 + 2P2C3 
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APPENDIX B 

STEADY-STATE COVARIANCE OF STATE VECTOR 

A.        COVARIANCE EQUATIONS 

1. PHYSIC AL S YS TE M MODE L 

x = (F - GC )x + r 

2. NOISE MODEL 

E[r] = 0 

E[r(t)r(t + T)] = QC(T) 

3 COVARIANCE OF x 

X = cov[xj 

X = AX + XAT + Q 

4. MATRIX DEFINITIONS 

x   = (9       y       v       s       d) 

0 1 0 0 1 

0 0 1 0 0 

al "a2 "a3 
0 "a4 

0 0 0 
-*3 

0 

0 0 0 P3 -P3 
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X 

Xll    X12 

X12    X22 

Xi3    X23 

X14   X24 

X15   X25 

X13   x14   x15 

X23   x24 

x 33 

X34   x44 

x 25 

X34   x35 

x 45 

X3 5   x45   x55 

0 0 0 0 

0 0 0 0 

0 0 
2 

p4q 0 

0 0 0 2p3< 

. o 0 0 0 

0 

0 

al =P1C1 a2=Pl(C2+l) a3=p2 + PlC3 a4 = PlC2 

B.        SIMULTANEOUS LINEAR EQUATIONS FOR 

STEADY-STATE COVARIANCE 

2x, _, + 2x. _ = 0 12    15 

x22+x25 + x13 = 0 

X23 + x35 " alxll " a2X12 " a3X13 " a4X15 = ° 
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x24 + x45 " P3X14 = ° 

X25 + X55 + P3(x14"x15) = 0 

2x23 = 0 

x33 " aix12 " a2x22 " a3X23 " a4x2 5 " ° 

X34 " P3X24 " ° 

X35 + P3(X24 " X25} = ° 

-2(a1x13 + a2x23 + a3x33 + a4x35) + p^ = 0 

alX14 " a2X24 " a3X34 " a4X45 " P3
X34 = ° 

p3(x34 - x35) - ajXjg - a2x25 - a^g - a4x55 - 0 

"2P3X44 + 2p3 CT    =0 

2P3X45 + P3X44 = ° 

2p3(x45 - x55) = 0 
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C.   SOLUTION TO STEADY-STATE COVARIANCE 

This closed-form solution was derived and computer checked by 

C.   M.   McKenzie.   (The solution extends beyond the formulation given in the 

text to include a white noise input with power spectral density q.) 

X23 " 0 

X44 = a2 

a* 
X45 " 2 

x44 
2 

0-2 
£55   2 45 

_    cr2(p^ + a3p3 + a2 - a4) 
x14 3 2 2(p3 + a3p3 + a2p3 + ap 

o£ 
X24 ~ P3X14 "   2 

X34 " P3X24 

X14(p3 + a3P3 + a2p3) + a24(2p3 + a3P3> + X55(a3P3 + P3 + a2 " a4> 
Xl5 3 x 2 J. p3 + a3p3 + a2p3 + ajl 

x25 " P3(X15 " X14) " X55 
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x35 " p3(x25 " x24) 

x12 ~ "X15 

x 

2 

ala3X12 " a4x35 + a3X25(a2 " a4) 

13 al " a2a3 

X22 " "X25 " X13 

X33 ~ alX12 + a2X22 + a4X25 

x 
x35 " a2X12 " a3X13 " a4x15 

11 
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